
Page 1 

High‐Speed Network 
Communica7on on the Cray XT 

Kitrick Sheets 
n8851@cray.com 



Page 2 

Agenda 

  XT communication overview 
  Portals overview 
  Interconnect specifics 
  Interesting communication patterns 
  Wrap-up 



Page 3 

XT Communication Stack 

Portals NAL 

SSIP 
Seastar 
NIC 

Portals API 

MPI  shmem 

Lustre 

GA 

TCP/IP 

Addi7onal APIs 

BEER 

pkAPI DVS 



Page 4 

Portals 
  Network communication API developed by Sandia 

•  Data movement is between ‘portal’s into user address spaces 
•  Supports zero-copy, OS bypass, and Application bypass 
•  Supports one-sided communication (Get and Put) 

  Primary method of communication on XT interconect   
•  Cray extensions for:  

  CLE optimization 
  Interrupt management improvement 
  Multi-core nodes 
  Atomic operations (GetPut, GetAdd, CGetPut) 
  Network resiliency (Basic End-to-End Reliability) 

  Portals Assumptions 
•  Network is reliable and deterministic 
•  Guaranteed in-order transmission of messages between NID/PID pairs 



Page 5 

Portals Structure 

•  Portal Table 
–  Anchor table for registered 

portals users 
•  Event Queue 

–  Completion/notification 
•  Match Entries 

–  Filters for in-bound 
RDMA operations 

•  Memory Descriptors 
–  Describe memory 

segments attached to 
match entries 

… 

… … 



Page 6 

Portals API 

•  Portal Table 
–  PtlNIInit(), PtlFini() 

•  Event Queue 
–  PtlEQAlloc() 

•  Match Entries 
–  PtlMEAttach() 

•  Memory Descriptors 
–  PtlMDAttach(), 

PtlMDBind() 
•  Data Movement 

–  PtlGet(), PtlPut() 

… 

… … 



Page 7 

Portals Data Transfer 

… 

… … 



Page 8 

Seastar Network Access Layer 

  Provides bridge between portals API and NIC 
  Manages transmit and receive state for in-flight portals 

requests 
  Works in conjunction with portals library for message 

validation and matching 
  Translates logical requests into DMA programs to be 

consumed by the NIC 



Page 9 

User Transmit Request Flow 

PtlMDBind() 

PtlPut(md, …) 

nal_send()  encode_tx() 

USER 

KERNEL 

NIC 

PtlEQAlloc() 

write_event() 



Page 10 

Providing reliable communication 

  Basic End-to-End Reliability (BEER) protocol 
  Host-resident software layer between NIC and portals 
  Provides recovery for various message transmission 

issues 
•  CAM overflow 
•  OS resource exhaustion 
•  Flow control for tx/rx imbalance and forward progress 
•  Cleanup for orphaned transmits (remote node failures, etc.) 
•  Warm reboot of nodes 

  Message sequence numbers used to manage flow 
between NID/PID pairs 



Page 11 

XT System Architecture 

SMW 

I/O Node 

Login Node 
Boot Node 
Network Node 

Compute Node 

Network 

Network 



Page 12 

Seastar connection to CPUs 

HT  Socket 1 Socket 0 

Memory  Memory 



Page 13 

Network Interface - Seastar 

Router 

 Packet D
M
A
 Engine 

HT 

HT 

PPC 

HT2LB 

HT 



Page 14 

Embedded Processor Complex 

  PPC 440 Processor 
  384KB on-board RAM 
  Manages DMA engine 

•  Interrogates incoming requests and coordinates with host for data 
placement 

•  Keeps tx engine fed 
  Provides RAS functionality 

•  Warm reboot 
•  Host failure recovery 
•  Maintenance interface communication 
•  Seastar fault detection and recovery 



Page 15 

Seastar Router 
  Connects the seastar to the 3D torus network 

•  6 network ports 
•  1 host port  

  Supports up to 32K nodes 
  Each port supports 3.25GB/s bandwidth 
  Supports cut-through routing 
  Basic flow control unit is a flit  

•  Flit contains 64 data bits + control bits 
  Flits are combined into network packets 

•  Packets consist of a header flit and up to 8 data flits 
  Hardware flow control is credit based 

•  Credits are replenished when receiving router accepts flit 



Page 16 

Seastar Router 

LUT 

LUT = Lookup Table: routes inbound request through  
                switch to des7na7on channel 



Page 17 

Seastar DMA Engine 

  Transmit Engine 
•  Single transmit DMA engine 
•  Responsible for translation of outbound block transfers into 

network flits 
•  PPC manages 32 entry TX DMA queue 
•  Price of tx = 1 credit / flit 

  Receive Engine 
•  Fed by 512 flit rx data fifo 
•  Content Addressable Memory (CAM) maps remote source to each 

of the 256 rx queues 
•  On CAM match, packet is sent to matching rx DMA stream 
•  Router credited when packet is moved from rx data fifo 



Page 18 

Seastar Transmit Machinery 

… 

PPC 

Router 



Page 19 

Seastar Receive Machinery 

(256x8 entries) 
…  … 

Router 

… 



Page 20 

Key DMA Parameters 

  TX DMA 
•  Single transmit FIFO 
•  Requests are consumed in the order presented 
•  PPC responsible for feeding host requests into engine 
•  Transmit possible only when credits available at target router 

  RX DMA 
•  Single receive FIFO 
•  Small messages (<= 16 bytes) handled directly from FIFO 
•  Large messages require CAM for DMA 
•  PPC/host intervene on CAM miss 
•  Router credits returned when packet moves from FIFO 



Page 21 

… 

… 

… … 

Normal message reception 



Page 22 

… 

… 

…  … 

CAM Miss 

PPC 

Seastar 
Driver 



Page 23 

… 

… 

…  … 

CAM Overflow 

PPC 

Seastar 
Driver 



Page 24 

Problem Scenario 1 – CAM thrash 

  All-to-one  
•  Actually, > 256 to one 

  Effective throughput of the seastar decreases in direct 
proportion to the sender/receiver ratio 

•  CAM overflows induce additional chatter due to: 
  Interrupt/nak sequence 
  Message retransmission 
  Unused data flowing through rx data fifo 

  No fairness in CAM allocation scheme 
•  CAM slots are ‘sticky’, but can be resourced at the end of a 

message. 



Page 25 

Scenario 2 – tx/rx imbalance 

  All-from-one (e.g., GET storm) 
•  Unrelated to CAM issues 

  GET requests arrive as single-packet requests, which do 
not require the CAM 

•  Processed directly from rx fifo 
•  Not throttled by CAM limit of 256 concurrent sources 

  REPLY DMAs fill the tx fifo and requests begin to backup 
  BEER initiates flow control when transmit resources 

become scarce 



Page 26 

Scenario 3 – tx interference 

  Transmit requests serialized through Seastar 
  Large tx stream from one PE can monopolize resources 
  Transmit queue is not prioritized 

•  Don’t initiate many large low-priority (async) requests followed by a 
small, high priority request (e.g., barrier) 

  Must consider asynchronous tx activity 
•  Lustre buffer flushes 
•  Out-of-band requests (RDMA pulls) 



Page 27 

Enhancements for hex-core and 
beyond 

  CAM Swapping 
•  Firmware enhancements to manage over commitment of CAM 
•  Similar in concept to TLB management 
•  Eliminates many fault-related retransmissions 

  Efficiency improvements to on-node transfers 
•  Less contention for local resources 
•  Reduced back-pressure on network 

  Core specialization 
•  Isolates jitter-related processing (e.g., system services, daemons, 

etc.) 



Page 28 

Summary 

  Forward progress on the network is key 
•  Stalls/delays at one node can ripple through the network. 

  All-to-one communication comes at a price 
•  CAM pressure can reduce effective throughput 

  Tx and rx communication paths have unique 
characteristics 

  Out-of-band communication can impact application 
  Be mindful of communication resource exhaustion costs as 

application scales 


